

LM199/LM299/LM399/LM3999 Precision Reference

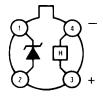
General Description

The LM199 series are precision, temperature-stabilized monolithic zeners offering temperature coefficients a factor of ten better than high quality reference zeners. Constructed on a single monolithic chip is a temperature stabilizer circuit and an active reference zener. The active circuitry reduces the dynamic impedance of the zener to about 0.50 and allows the zener to operate over 0.5 mA to 10 mA current range with essentially no change in voltage or temperature coefficient. Further, a new subsurface zener structure gives low noise and excellent long term stability compared to ordinary monolithic zeners. The package is supplied with a thermal shield to minimize heater power and improve temperature regulation.

The LM199 series references are exceptionally easy to use and free of the problems that are often experienced with ordinary zeners. There is virtually no hysteresis in reference voltage with temperature cycling. Also, the LM199 is free of voltage shifts due to stress on the leads. Finally, since the unit is temperature stabilized, warm up time is fast.

The LM199 can be used in almost any application in place of ordinary zeners with improved performance. Some ideal applications are analog to digital converters, calibration standards, precision voltage or current sources or precision power supplies. Further in many cases the LM199 can replace references in existing equipment with a minimum of wiring changes.

The LM199 series devices are packaged in a standard hermetic TO-46 package inside a thermal shield. The LM199 is rated for operation from -55°C to $+125^\circ\text{C}$ while the LM299 is rated for operation from -25°C to $+85^\circ\text{C}$ and the LM399 is rated from 0°C to $+70^\circ\text{C}$.


The LM3999 is packaged in a standard TO-92 package and is rated from 0°C to $+70^{\circ}\text{C}$

Features

- Guaranteed 0.0001%/°C temperature coefficient
- Low dynamic impedance 0.5Ω
- Initial tolerance on breakdown voltage 2%
- Sharp breakdown at 400 µA
- Wide operating current 500 µA to 10 mA
- Wide supply range for temperature stabilizer
- Guaranteed low noise
- Low power for stabilization 300 mW at 25°C
- Long term stability 20 ppm
- Proven reliability, low-stress packaging in TO-46 integrated-circuit hermetic package, for low hysteresis after thermal cycling. 33 million hours MTBF at T_A = +25°C (T_J = +86°C)
- Certified long term stability available
- MIL-STD-883 compliant

Connection Diagrams

Metal Can Package (TO-46)

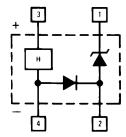
Top View

TL/H/5717-14

TL/H/5717-10

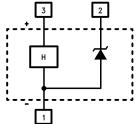
LM199/LM299/LM399 (See Table on fourth page)
NS Package Number H04D

Plastic Package TO-92



Bottom View

LM3999 (See Table on fourth page) NS Package Number Z03A


Functional Block Diagrams

LM199/LM299/LM399

TL/H/5717-15

LM3999

TL/H/5717-11

Absolute Maximum Ratings

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the following Reliability Electrical Test Specifications documents: RETS199X for LM199, RETS199AX for LM199A.

 Temperature Stabilizer Voltage
 40V

 LM199/LM299/LM399
 36V

 LM3999
 36V

 Reverse Breakdown Current
 20 mA

 Reference to Substrate Voltage $V_{(RS)}$ (Note 1) 40V -0.1V

Operating Temperature Range

Soldering Information

TO-92 package (10 sec.) + 260°C TO-46 package (10 sec.) + 300°C

Electrical Characteristics (Notes 2, 5)

Parameter	Conditions		LM199H/LM299H			LM399H		
raiametei			Тур	Max	Min	Тур	Max	Units
Reverse Breakdown Voltage	$0.5~\text{mA} \leq I_{ ext{R}} \leq 10~\text{mA}$	6.8	6.95	7.1	6.6	6.95	7.3	V
Reverse Breakdown Voltage Change with Current	$0.5~\text{mA} \leq I_{ extsf{R}} \leq 10~\text{mA}$		6	9		6	12	mV
Reverse Dynamic Impedance	I _R = 1 mA		0.5	1		0.5	1.5	Ω
Reverse Breakdown Temperature Coefficient	$ \begin{bmatrix} -55^{\circ}C \le T_{A} \le +85^{\circ}C \\ +85^{\circ}C \le T_{A} \le +125^{\circ}C \end{bmatrix} \begin{array}{c} LM199 \\ -25^{\circ}C \le T_{A} \le 85^{\circ}C \\ 0^{\circ}C \le T_{A} \le +70^{\circ}C \\ LM399 \\ \end{bmatrix} $		0.00003 0.0005 0.00003	0.0001 0.0015 0.0001		0.00003	0.0002	%/°C %/°C %/°C %/°C
RMS Noise	10 Hz ≤ f ≤ 10 kHz		7	20		7	50	μV
Long Term Stability	Stabilized, 22°C≤T _A ≤28°C, 1000 Hours, I _R =1 mA±0.1%		20			20		ppm
Temperature Stabilizer Supply Current	$T_A = 25$ °C, Still Air, $V_S = 30V$ $T_A = -55$ °C		8.5 22	14 28		8.5	15	mA
Temperature Stabilizer Supply Voltage				40	9		40	V
Warm-Up Time to 0.05%	$V_S = 30V, T_A = 25^{\circ}C$		3			3		sec.
Initial Turn-on Current	$9 \le V_S \le 40$, $T_A = +25$ °C, (Note 3)		140	200		140	200	mA

Electrical Characteristics (Note 2)

,						
D						
Parameter	Conditions	Min	Тур Мах		Units	
Reverse Breakdown Voltage	$0.6~\text{mA} \leq I_{ ext{R}} \leq 10~\text{mA}$	6.6	6.95	7.3	V	
Reverse Breakdown Voltage Change with Current	$0.6~\text{mA} \leq I_{\mbox{\scriptsize R}} \leq 10~\text{mA}$		6	20	mV	
Reverse Dynamic Impedance	$I_R = 1 \text{ mA}$		0.6	2.2	Ω	
Reverse Breakdown Temperature Coefficient	$0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C}$		0.0002	0.0005	%/°C	
RMS Noise	$10 \text{ Hz} \le f \le 10 \text{ kHz}$		7		μV	
Long Term Stability	Stabilized, 22°C \leq T _A \leq 28°C, 1000 Hours, I _R $=$ 1 mA \pm 0.1%		20		ppm	
Temperature Stabilizer	$T_A = 25$ °C, Still Air, $V_S = 30V$		12	18	mA	
Temperature Stabilizer Supply Voltage				36	V	
Warm-Up Time to 0.05%	V _S = 30V, T _A = 25°C		5		sec.	
Initial Turn-On Current	$9 \le V_S \le 40$, $T_A = 25$ °C		140	200	mA	

Electrical Characteristics (Notes 2, 5)

Parameter	Conditions		LM199AH, LM299AH			LM399AH		
raiametei			Тур	Max	Min	Тур	Max	Units
Reverse Breakdown Voltage	$0.5~\text{mA} \leq I_{\text{R}} \leq 10~\text{mA}$	6.8	6.95	7.1	6.6	6.95	7.3	V
Reverse Breakdown Voltage Change with Current	$0.5~\text{mA} \leq I_{\mbox{\scriptsize R}} \leq 10~\text{mA}$		6	9		6	12	mV
Reverse Dynamic Impedance	I _R = 1 mA		0.5	1		0.5	1.5	Ω
Reverse Breakdown Temperature Coefficient	$ \begin{array}{lll} -55^{\circ}C \!\leq\! T_{A} \!\leq\! +85^{\circ}C \\ +85^{\circ}C \!\leq\! T_{A} \!\leq\! +125^{\circ}C \end{array} \end{array} \begin{array}{ll} LM199A \\ -25^{\circ}C \!\leq\! T_{A} \!\leq\! 85^{\circ}C & LM299A \\ 0^{\circ}C \!\leq\! T_{A} \!\leq\! +70^{\circ}C & LM399A \end{array}$		0.00002 0.0005 0.00002	0.00005 0.0010 0.00005		0.00003	0.0001	%/°C %/°C %/°C %/°C
RMS Noise	$10~\text{Hz} \leq f \leq 10~\text{kHz}$		7	20		7	50	μV
Long Term Stability	Stabilized, $22^{\circ}C \le T_A \le 28^{\circ}C$, 1000 Hours, $I_R = 1 \text{ mA} \pm 0.1\%$		20			20		ppm
Temperature Stabilizer Supply Current	$T_A = 25$ °C, Still Air, $V_S = 30V$ $T_A = -55$ °C		8.5 22	14 28		8.5	15	mA
Temperature Stabilizer Supply Voltage				40	9		40	V
Warm-Up Time to 0.05%	$V_S = 30V, T_A = 25^{\circ}C$		3			3		sec.
Initial Turn-on Current	$9 \le V_S \le 40$, $T_A = +25$ °C, (Note 3)		140	200		140	200	mA

Electrical Characteristics (Notes 2, 5)

Parameter	Conditions	LM199AH-20, LM299AH-20			LM399AH-50			Units	
raiametei	Conditions		Тур	Max	Min	Тур	Max	Cinto	
Reverse Breakdown Voltage	$0.5 \text{ mA} \le I_{R} \le 10 \text{ mA}$	6.8	6.95	7.1	6.6	6.95	7.3	٧	
Reverse Breakdown Voltage Change With Current	$0.5 \text{ mA} \le I_{\mbox{\scriptsize R}} \le 10 \text{ mA}$		6	9		6	12	mV	
Reverse Dynamic Impedance	$I_R = 1 \text{ mA}$		0.5	1		0.5	1.5	Ω	
Reverse Breakdown Temperature Coefficient	$ \begin{array}{lll} -55^{\circ}\text{C} \! \le \! T_{\text{A}} \! \le \! 85^{\circ} \\ 85^{\circ}\text{C} \! \le \! T_{\text{A}} \! \le \! 125^{\circ}\text{C} \end{array} \right] \text{LM199A} \\ -25^{\circ}\text{C} \! \le \! T_{\text{A}} \! \le \! 85^{\circ}\text{C} \text{LM299A} \\ 0^{\circ}\text{C} \! \le \! T_{\text{A}} \! \le \! 70^{\circ}\text{C} \text{LM399A} \end{array} $		0.00002 0.0005 0.00002	0.00005 0.0010 0.00005		0.00003	0.0001	%/°C %/°C %/°C	
RMS Noise	10 Hz≤f≤10 kHz		7	20		7	50	μV	
Long Term Stability	Stabilized, $22^{\circ}\text{C} \le \text{T}_{\text{A}} \le 28^{\circ}\text{C}$, 1000 Hours, $\text{I}_{\text{R}} = 1 \text{ mA} \pm 0.1\%$		8	20		9	50	ppm	
Temperature Stabilizer Supply Current	T _A =25°C, Still Air, V _S =30V T _A =55°C		8.5 22	14 28		8.5	15	mA	
Temperature Stabilizer Supply Voltage		9		40	9		40	٧	
Warm-Up Time to 0.05%	$V_S = 30V, T_A = 25^{\circ}C$		3			3		s	
Initial Turn-on Current	$9 \le V_S \le 40$, $T_A = 25$ °C, (Note 3)		140	200		140	200	mA	

Note 1: The substrate is electrically connected to the negative terminal of the temperature stabilizer. The voltage that can be applied to either terminal of the reference is 40V more positive or 0.1V more negative than the substrate.

Note 2: These specifications apply for 30V applied to the temperature stabilizer and $-55^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$ for the LM199; $-25^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$ for the LM299 and $0^{\circ}\text{C} \le T_{A} \le +70^{\circ}\text{C}$ for the LM399 and LM3999.

Note 3: This initial current can be reduced by adding an appropriate resistor and capacitor to the heater circuit. See the performance characteristic graphs to determine values.

Note 4: Do not wash the LM199 with its polysulfone thermal shield in TCE.

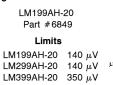
Note 5: A military RETS electrical test specification is available for the LM199H/883, LM199AH/883, and LM199AH-20/883 on request.

Ordering Information

Initial Tolerance	0°C to +70°C	−25°C to +85°C	−55°C to +125°C	NS Package
2%		LM299AH	LM199AH, LM199AH/883	H04D
5%	LM399H LM399AH	LM299H	LM199H, LM199H/883	H04D
5%	LM3999Z			Z03A
Guaranteed Long Term Stability	LM399AH-50	LM299AH-20	LM199AH-20, LM199AH-20/883	H04D

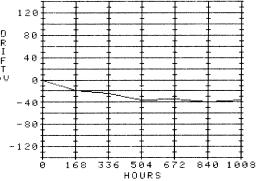
Certified Long Term Drift

The National Semiconductor LM199AH-20, LM299AH-20, and LM399AH-50 are ultra-stable Zener references specially selected from the production runs of LM199AH, LM299AH, LM399AH and tested to confirm a long-term stability of 20, 20, or 50 ppm per 1000 hours, respectively. The devices are measured every 168 hours and the voltage of each device is logged and compared in such a way as to show the deviation from its initial value. Each measurement is taken with a probable-worst-case deviation of ± 2 ppm, compared to the Reference Voltage, which is derived from several groups of NBS-traceable references such as LM199AH-20's, 1N827's, and saturated standard cells, so

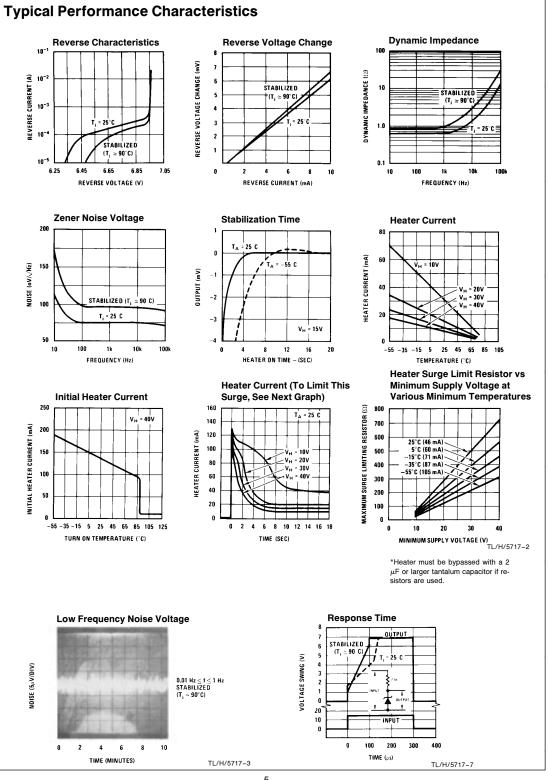

that the deviation of any one group will not cause false indications. Indeed, this comparison process has recently been automated using a specially prepared computer program which is custom-designed to reject noisy data (and require a repeat reading) and to record the average of the best 5 of 7 readings, just as a sagacious standards engineer will reject unbelievable readings.

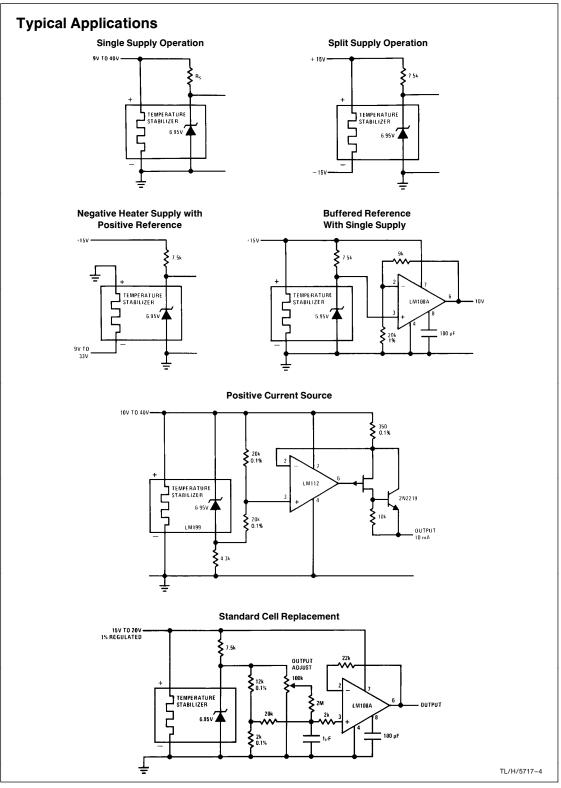
The typical characteristic for the LM199AH-20 is shown below. This computerized print-out form of each reference's stability is shipped with the unit.

Typical Characteristics


National Semiconductor Certified Long Term Drift

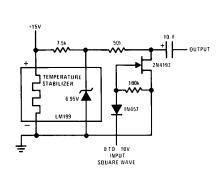
Hrs	Drift		
168	-20		
336	-24		
504	-36		
672	-34		
840	-40		
1008	-36		

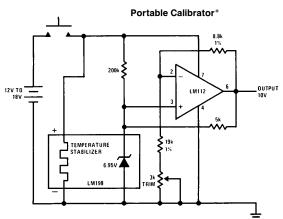



Testing Conditions

Heater Voltage 30V Zener Current 1 mA Ambient Temp. 25°C

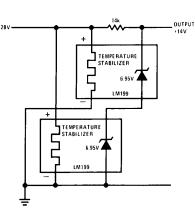
TL/H/5717-12

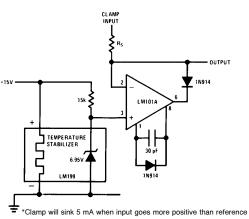




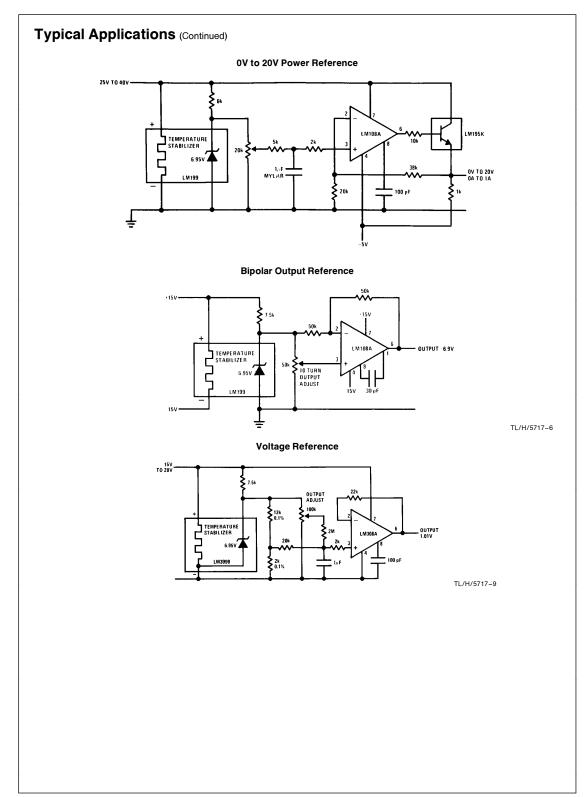
Typical Applications (Continued)

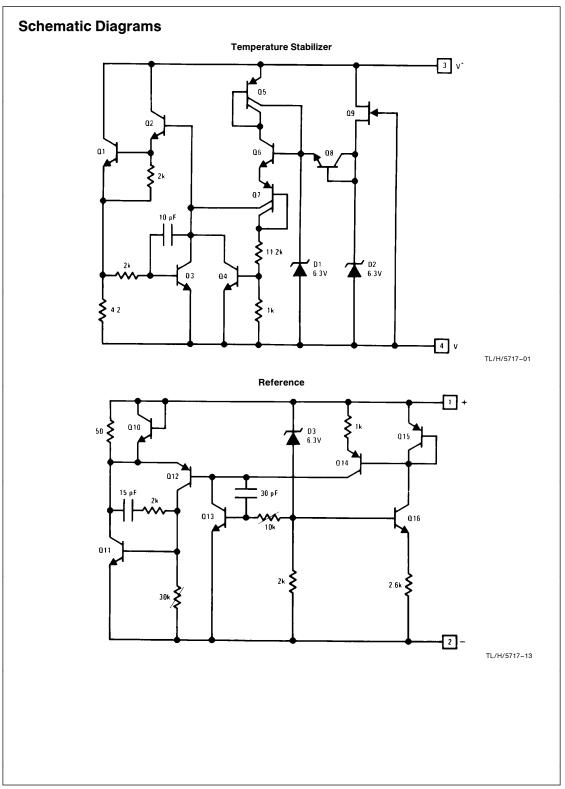
Negative Current Source 7.5k CURRENT ADJUST TEMPERATURE STABILIZER 6.95v LM112 20k 20k 3 10 20k 3 10 20x 3 3 100

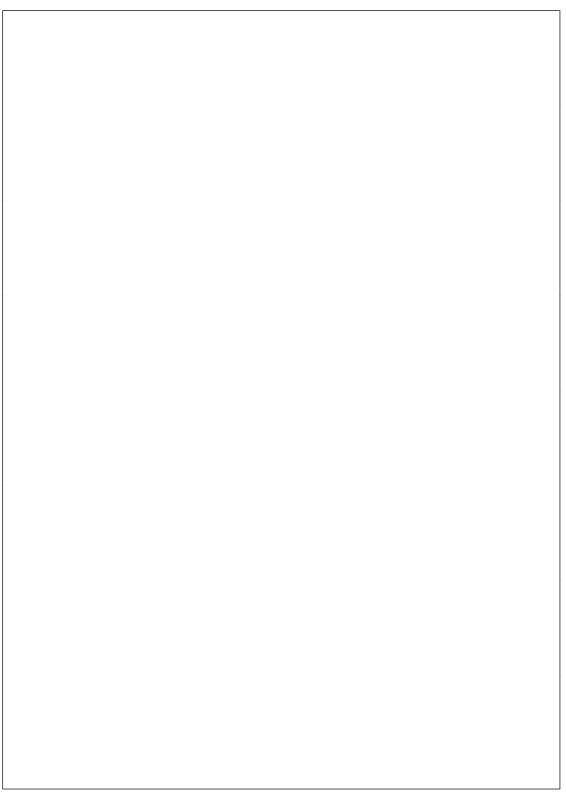

Square Wave Voltage Reference

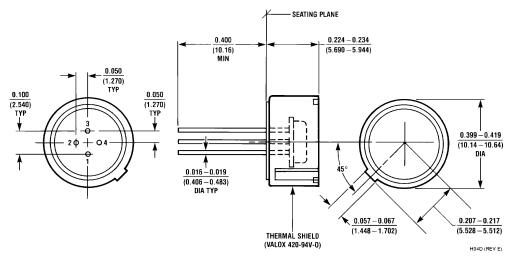


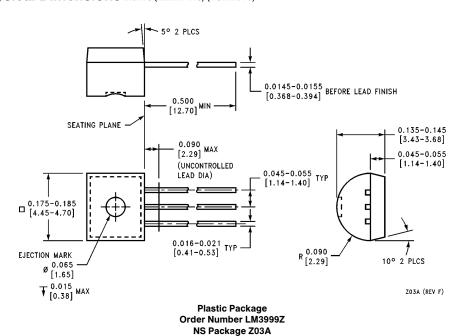
*Warm-up time 10 seconds; intermittent operation does not degrade long term stability.


14V Reference




Precision Clamp*


TL/H/5717-5



Order Number LM199H, LM199H/883, LM299H, LM399H, LM199AH, LM199AH/883, LM199AH-20, LM199AH-20/883, LM299AH, LM299AH-20, LM399AH or LM399AH-50 NS Package H04D

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege etevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.

13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.